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Abstract Body 
Background / Context:  

Experts agree: comparison is good. Researchers in cognitive science emphasize the 
importance of comparison for learning and transfer (e.g., Gentner, Loewenstein, & Thompson, 
2003; Gick & Holyoak, 1983). A large body of research demonstrates that comparison can lead 
learners to focus on deep relational commonalities rather than on specific, potentially 
idiosyncratic features of the particular examples (Gentner & Medina, 1998; Namy & Gentner, 
2002; Ross & Kennedy, 1990). For example, when people are asked to discuss cigarettes, they 
write something like ‘‘cylindrical, paper-wrapped, filled with tobacco,’’ whereas when people 
compare cigarettes and time bombs, they write something like ‘‘They both do their damage after 
a period in which no damage is evident’’ (Gentner & Clement, 1988).  

Experimental studies on comparison have yielded three key findings: (a) two examples are 
better than one (Gick & Holyoak, 1983; Namy & Gentner, 2002), (b) two examples presented 
together are better than two examples presented separately (Gentner et al., 2003; Oakes & Ribar, 
2005), and (c) instructional support augments the benefits of comparison (Catrambone & 
Holyoak, 1989; Gentner et al., 2003; VanderStoep & Seifert, 1993). However, largely absent 
from this extensive cognitive science literature are investigations of the benefits of comparison 
with academic tasks, although recent research has looked at whether comparison can help 
children learn mathematical procedures (Rittle-Johnson and Star, 2007), or undergraduates learn 
complex geoscience concepts (Jee et al., 2010). In addition, the cognitive science literature 
provides limited guidance on one of the most important decisions that must be made in the 
implementation of comparison—namely, what should be compared. When two examples are to 
be compared, what dimensions of the examples should vary and what dimensions should remain 
the same? In this set of studies, we investigate whether comparison can help learning in another 
domain—graph representations—and what types of comparisons are most useful.  
 
Purpose / Objective / Research Question / Focus of Study: 

We explore the role of comparison in improving graph fluency. The ability to use graphs 
fluently is crucial for STEM achievement, but graphs are challenging to interpret and produce 
because they often involve integration of multiple variables, continuous change in variables over 
time, and omission of certain details in order to highlight central higher-order relations. Can 
comparison facilitate graph fluency by focusing learners on the relations between multiple 
variables? Furthermore, does the comparison of highly similar graphs facilitate performance to a 
greater degree than comparison less similar cases?  
 
Setting: 
This experimental research was conducted in the Language and Cognition Laboratory at 
Northwestern University.  
 
Population / Participants / Subjects:  
Experiment 1: 22 Northwestern undergraduates participated to fulfill a course requirement.  
Experiment 2: 64 Northwestern undergraduates participated to fulfill a course requirement.  
 
Intervention / Program / Practice:  
Domain of Study 

In these studies, we focus on learning about Stock-and-Flow graphs, which depict the 
relationship between a resource quantity (stock), and the inflows and outflows that alter them. 



 

SREE Fall 2011 Conference Abstract Template 2 

Any stock can be thought of as the amount of water in a tub. The water level accumulates the 
flow of water into the tub (the inflow) less the flow exiting through the drain (the outflow). The 
rate of change in the water level is the net flow, given by the difference between the inflow and 
outflow. As everyday experience suggests, the water level rises only when the inflow exceeds the 
outflow, falls only when the outflow exceeds the inflow, and remains the same only when the 
inflow equals the outflow. Prior work has shown that stock-and-flow graph problems are 
unintuitive and difficult, even in simple systems (like bathtubs) and even for highly educated 
people with strong technical backgrounds (Sterman & Booth Sweeney, 2002).  
 
Experiment 1 

Procedure. Experiment 1 took approximately 20 minutes to complete. Participants were 
randomly assigned to the Comparison or Sequential (Control) condition. Each participant 
received a packet which included several example graphs and target graphing problems. 
Participants were tested in individual booths. They were given as much time as they needed, 
which was roughly 20 minutes for both groups.  

Training Materials. Three example Stock-and-Flow graphs were shown to participants. Each 
example consisted of (1) a graph showing inflows and outflows to a stock and (2) a graph with 
the corresponding stock level. Each example illustrated one of three key principles of stocks-and-
flows: 

• When inflow > outflow, stock is rising (I > O ! S+) 
• When inflow < outflow, stock is falling (I < O ! S-) 
• When inflow = outflow, stock is constant (I = O ! S0) 

We constructed two different sets of examples (Table 1). The three graphs within a set were 
highly similar—the only elements that differed were the inflow trajectory and the corollary stock 
graph. Participants only saw examples from one of the sets, not both.  

(table 1 here) 
Participants in both conditions were first introduced to stocks-and-flows in the context of 

CO2 emissions, where the stock is the amount of atmospheric CO2, inflow is CO2 emissions, and 
outflow is CO2 removal. Then participants were shown an example, with a brief description of 
what the graphs depicted. All participants then saw the three examples above and were asked to 
elaborate on the examples.  

The only difference between the Sequential and Comparison groups involved how the 
example and elaboration task was structured. The Sequential group (n=11) saw all three 
examples presented on separate pages; the order was counterbalanced across participants. Below 
each example, participants were asked to elaborate on each example by describing “What is 
going on in the TOP (BOTTOM) graph?”. 

The Comparison group (n=11) was given two examples presented side-by-side. To ensure 
that the Comparison group saw all three examples, they were given two comparison sets. Thus 
one of the examples was shown twice; the repeated example was counterbalanced across 
participants. Three types of comparisons were possible: (1) I > O and I < O, (2) I > O and I = O, 
or (3) I < O and I = O. All participants received type (1) as the first comparison, then either saw 
type (2) or type (3); thus there were two possible comparison types, which were counterbalanced 
within the Sequential and Comparison groups. For each comparison set, participants were asked 
to list similarities and differences between the inflow/outflow graphs and stock graphs.  

Test materials. After completing the training task, participants were given seven graphical 
integration problems (Sterman & Booth Sweeney, 2002). For each problem, the hypothetical 
behavior for two (out of the three) stock-and-flow variables is shown, and the participant must 
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draw the missing variable’s corresponding trajectory (Figure 1). The problems were presented in 
two orders—one the reverse of the other.  

(figure 1 here) 
 
Experiment 2 

Procedure. The procedure was as in Experiment 1, however in this study participants were 
either assigned to the High Similarity (HiSim, n=32) condition or Low Similarity (LoSim, n=32) 
condition.  

Materials. The materials were the same used in Experiment 1. For the HiSim comparisons, 
the examples were drawn from a single set of examples (mimicking the Comparison condition in 
Experiment 1). To create the LoSim comparisons, one example within each comparison pair was 
replaced with the equivalent example from the other set (e.g., Set A, I > O was replaced with Set 
B, I > O). Thus, while the underlying principles being compared were exactly the same in the 
HiSim and LoSim groups, the actual trajectories in the graphs were extremely dissimilar in the 
LoSim group. The target problems were as in Experiment 1.  
 
Research Design: 
Experiment 1 involved a 2 (Training Condition: Comparison vs. Sequential) x 2 (Problem Order) 
x 2 (Example Set) x 2 (Comparison Type) between-subjects factorial design. Experiment 2 was 
of the same design, except the two levels of Training Condition were HiSim and LoSim.  
 
Data Collection and Analysis:  
Participants used a pen to write out (and draw) their responses in the packet.  

Scoring Target Problems. Two raters, blind to the hypotheses of the studies, scored the 
graphical responses for overall correctness. Each response was given a score of 1 or 0. These 
scores were summed for each participant (min = 0, max = 7). Inter-rater agreement across both 
studies was 95% (Cohen's kappa = .86). Conflicting scores were resolved through discussion.  

Scoring Similarity and Difference Listings. Scoring is currently in-progress. We have 
designed a scoring rubric that aims to capture the quality of participants’ similarity/difference 
listings. For example, an example of a high quality response involves descriptions that: integrate 
flows and stock, mention the important difference between graphs (e.g., that one graph shows I > 
O while the other shows I < O), and are conceptual rather than graph-bound. In contrast, a low 
quality response would: talk about all variables separately; make no mention of the important 
difference; use graph-bound rather than conceptual descriptions (e.g., referring to the inflow as 
the blue line); and focus on superficial features of the graphs (e.g., titles).  

Analysis. For both experiments 1 and 2, a multivariate analysis of variance (ANOVA) was 
Summed score was entered as the dependent variable and Training Condition, Problem Order, 
Example Set, and Comparison Type were entered as independent variables. Additionally, once 
the similarity and difference listings are scored—to obtain a measure of comparison quality—we 
will examine the relationship between task performance and the quality of comparison. Our 
prediction is that participants who generate higher quality comparisons will have higher scores 
on the graph problems.  
 
Findings / Results:   

Experiment 1: Experiment 1 tested the hypothesis that comparing examples will facilitate 
performance on our graphical integration problems. There were no main effects or interactions 
involving Problem Order, Example Set, and Comparison Type, all ps > .21, so participants were 
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collapsed into two groups—Comparison and Sequential—for all further analyses. Overall, 
people in the Comparison condition had higher scores on the graph problems (M=5.00) than 
those in the Sequential Condition (M=3.12), t(20)= 2.11, p<.05, two-tailed.  

Experiment 2: Experiment 2 tested the hypothesis that comparing high-similarity examples 
will facilitate performance to a greater degree that low-similarity comparisons. There were no 
main effects or interactions involving Problem Order, Example Set, and Comparison Type, all ps 
> .38, so participants were collapsed into two groups—HiSim and LoSim—for all further 
analyses. Participants in the HiSim condition had slightly higher scores (M=4.64) than 
participants in the LoSim condition (M=3.38), although this difference was not significant, t(62) 
= 1.36, p=0.18. 

 
Conclusions:  

These results suggest that comparison of highly similar examples promotes understanding 
and fluency with graphical representations of stock-and-flow scenarios, compared to a situation 
in which the same examples are not compared (Experiment 1). This finding supports prior work 
that demonstrates the benefits of comparing examples, and extends it to a novel domain—
graphical representations. We suggest that pedagogical methods that assume that learners will 
abstract principles from single examples or that they will spontaneously draw comparisons 
across examples are likely to fall well short expectations. We suggest that one aim for instruction 
should be not simply to provide cases but to encourage active comparison of examples. 

The results of Experiment 2 are somewhat less clear, but are still valuable for what they can 
tell us about the range of permitted variation between cases. Experiment 2 showed no difference 
in performance between those who compared high-similarity examples and low-similarity 
examples. One possible explanation for this finding is that the paired cases in the low-similarity 
condition were, in fact, quite similar to one another: while the trajectories of the flows and stocks 
may have differed, the perceptual features of the graphs were identical (e.g., the inflow line was 
always blue). Prior empirical work on comparison has shown that when two examples share 
surface features that are consistent with deeper relational commonalities, identifying these 
relational commonalities becomes much easier (consider a volleyball and a soccer ball vs. a 
volleyball and a football) (e.g., Gentner & Medina, 1998). In these studies, it is possible that the 
low-similarity examples were similar enough to facilitate high-quality comparisons, which in 
turn would lead to better learning. Once we finish coding participants’ similarity and difference 
listings, we can assess whether both the high-similarity and low-similarity groups generated 
equally good comparisons.  

We are not suggesting that comparison of cases is a cure-all. Even if learners do compare 
examples, they may be imperfect or incomplete in their identification of crucial relational 
commonalities between cases (Reeves & Weisberg, 1994). Completing our analysis of 
comparison quality and whether it is a good predictor of performance will give us insight into 
what types of comparisons are crucial for learning about graphical representations. 

One limitation of our findings concerns the generalizability of the results. The current studies 
were conducted in a laboratory setting with undergraduates at an academically rigorous 
university. Whether we replicate these results with other populations in other settings is an open 
question. However, clarifying the conditions under which comparison can help or hurt learning 
of graphical representations in a highly controlled environment is an important first step in 
developing useful classroom interventions. 
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Appendix B. Tables and Figures 
 
Table 1. Example Sets used in Experiments 1 and 2. 
 

Key Principle Depicted Set A Set B 

Inflow > Outflow, Stock Rising  
(I > O ! S+) 

 

 

 

 

Inflow < Outflow, Stock Falling  
(I < O ! S-) 

 

 

 

 

Inflow = Outflow, Stock Constant  
(I > O ! S0) 
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Figure 1. Sample Graphical Integration Task. In this problem, the participant is given the inflow 
and outflow and must draw the corresponding stock. 
 
Problem 1 
The graph below shows a hypothetical pattern of CO2 Emissions and Removal. 
 

 
 
 
On the graph below, draw the pattern of Atmospheric CO2 that would be produced by the Emissions and Removal 
pattern above. The green dot (•) at time zero shows the initial atmospheric CO2 level. 
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